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LONG-TERM GOAL 
 
The overall goal of this work, now completed, was to combine hyperspectral imagery (HSI) with 
LIDAR bathymetry to improve retrievals of bottom classification and water-column inherent optical 
properties including, if possible, the retrieval of the vertical structure of water-column and benthic-
boundary scattering layers from airborne platforms. 
 
OBJECTIVES 
 
There are critical differences between active and passive systems, including the errors in their 
estimates of bathymetry, bottom classification, and water column inherent optical properties (IOPs).  
Active LIDAR systems have greater depth penetration and smaller errors associated with bathymetry 
estimates.  In addition, these systems can be operated without regard to solar illumination and have 
fewer atmospheric constraints.  Passive systems yield spectral data with lower power requirements and 
allow for the retrieval of bottom characteristics above and beyond bathymetry.  However, the existing 
HSI inversion techniques that solve for bottom classification and in situ IOPs require a simultaneous 
solution for bathymetry.  Inhomogeneous waters can introduce uncertainties into the spectrum-
matching and look-up-table (LUT) approach of Mobley et al., 2005 that increase the errors in the 
simultaneous estimates of bathymetry, bottom classification, and in-water IOPs.  One of the greatest 
attributes of the passive systems, however, is that they have far greater spatial coverage for the same 
hour of flight time.  This yields a critical difference in the deployment strategies of these systems in 
that at the same ground resolution (a few meters) the hyperspectral systems have 30-40 times the 
spatial coverage of LIDAR systems.  A method that fuses these techniques could provide the ability to 
cover thousands of square kilometers a day, possibly providing estimates of the vertical structure of 
IOPs, as well as bathymetry and bottom classification, with concomitant error budgets.  This research 
therefore focused on developing deployment schemes and data fusion techniques for coupled active 
and passive sensor systems so as to address the above issues. 
 
APPROACH 
 
The spectrum-matching and look-up-table (LUT) methodology of Mobley et al., 2005 is based on 
comparing a measured remote-sensing reflectance spectrum with a large database of spectra 
corresponding to known water, bottom, and external environmental conditions.  The water and bottom 
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conditions of the water body where the spectrum was measured are then taken to be the same as the 
conditions corresponding to the database spectrum that most closely matches the measured spectrum. 
 
To improve LUT retrievals of bottom and water-column optical properties, I developed code to 
constrain these retrievals by using known bathymetry as obtained from a LIDAR survey of the imaged 
area.  I also investigated the retrieval of in-water and benthic boundary scattering layers using HSI. 
 
The data set of combined LIDAR bathymetry and hyperspectral imagery (HSI), which was anticipated 
to be acquired by others in separately funded work, never became available.  I therefore substituted an 
image from Lee Stocking Island, Bahamas, which was taken during the ONR-funded Coastal Benthic 
Optical Properties (CoBOP) program, for which acoustic bathymetry was available.  Whether the 
bathymetry is available from LIDAR, an acoustic survey, or a digitized nautical chart is largely 
irrelevant when doing depth-constrained retrievals of bottom and water-column properties. 
 
WORK COMPLETED 
 
In related work this year on the LUT methodology (see separate annual report), I developed LUT RRrs 
inversion code that allows the depth to be either unknown or known at each pixel.  When the depth is 
known for a given pixel, only the bottom reflectance and water-column absorption, scatter, and 
backscatter spectra are retrieved by the LUT inversion.  If no depth is available for a given pixel, then 
the bathymetry is also retrieved.  I then used that code in the present work investigate what 
improvements in LUT retrievals of bottom classification and water inherent optical properties (IOPs) 
can be achieved if the bathymetry is known from a LIDAR. 
 
RESULTS 
 
Figure 1 shows an RGB image of the Horseshoe Reef area north of Lee Stocking Island, Bahamas.  
Figure 2 shows the acoustic bathymetry coverage, which was used as a proxy for LIDAR bathymetry.  
The available acoustic coverage was interpolated from the acoustic ping locations to the HSI pixels, so 
that each pixel then had a known depth.  Areas without acoustic coverage were masked out (the grey 
areas in the subsequent figures) and omitted from the subsequent analyses. The LUT retrieval then 
took the depth as known at each pixel, so that only the bottom reflectance and water-column 
absorption and scattering spectra needed to be retrieved by the LUT spectrum-matching algorithms. 
 
Various LUT retrievals of bottom reflectance/type and water-column IOPs were made for 
unconstrained depths (i.e., LUT simultaneously retrieves the bottom depth along with the bottom 
reflectance and water-column IOPs) vs. constrained depths (the depth at each pixel is given by the 
interpolated acoustic bathymetry, so that LUT solves only for the bottom reflectance and water 
properties).  Figures 3 and 4 show an example of the difference in the retrieved bottom reflectance RRb 
at 488 nm.  Figure 5 shows the corresponding percent changes in RbR (488).  Constraining the depth 
caused some areas of highly reflecting bottom to get brighter, and some low-reflecting areas got 
darker, but on average the bottom reflectance changed by only +3%.  Forty percent of the pixels had 
RRb(488) change by less than ±5%, and only 11% of pixels changed by more that ±25%. 
 
Figures 6 and 7 show the corresponding changes in bottom classification for unconstrained vs. 
constrained depths.  We see that when the depth is constrained, some areas retrieved as dense 
vegetation are reclassified as pure corals or less dense mixtures of mixtures of sediment, corals, sea 
grass, turf algae, and macrophytes. Some areas originally classified as sand with sparse vegetation are 



reclassified as bare sediment when the depth is constrained.  Overall, though, there are no large 
changes in the bottom classification. 
 
Thus we see that constraining the depth causes some changes in the bottom retrieval, in terms of either 
the reflectance or the bottom type.  This is what is expected.  The constrained retrievals are likely more 
accurate, but pixel-by-pixel bottom reflectances or classification are not available for validation of 
these retrievals.  In either case, the retrieved bottom classification is plausible. 
 
However, the changes are not great.  For example, a sediment bottom is never turned into dense 
vegetation or vice versa.  The reason that the depth-constrained retrievals are not greatly different from 
the unconstrained retrievals is that the unconstrained LUT depth retrievals are already close to correct.  
(On average, the unconstrained LUT depth retrievals for this image were within 7% of the acoustic 
values, and 87% of the LUT retrievals were within 25% of the acoustic depth.)  Constraining the 
depths to be exactly correct thus has only a small effect on the remaining parameters being retrieved.  
This indicates that the LUT retrieval is not having any problems with non-uniqueness.  That is to say, 
LUT never finds an incorrect depth, incorrect bottom reflectance, and incorrect water IOPs that 
together give a remote-sensing reflectance that is close to the correct one.  This is a reassuring check 
on LUT’s ability to retrieve the correct environmental parameters in unconstrained retrievals, as will 
often be necessary in applications to denied-access areas. 
 
Similar small changes are seen in the retrieved absorption, scattering, and backscatter spectra.  These 
IOP retrievals are not shown here because of file size limitations for electronic submission of reports. 
 
I thus conclude that constraining the depth can lead to improvements in the retrieved bottom 
classification and water IOPs, but that even unconstrained retrievals are acceptably accurate.  In no 
instance does the LUT retrieval methodology have problems with the non-uniqueness of the remote-
sensing reflectance spectra. 
 
The results shown here will be presented in more detail at the Ocean Optics XVIII conference in 
October 2006.  A paper on this work is being prepared for submission to either Applied Optics or 
Optics Express. 
 
IMPACT/APPLICATION 
 
This research leads to the ability to detect near-bottom scattering layers through the fusion of active 
and passive optical remote sensing data streams.  This will provide needed IOP data, perhaps including 
IOP vertical structure when LIDAR data are available, for the performance prediction of both acoustic 
and optical MCM detection and identification systems.  At the very least, these data streams will 
provide the information streams of bathymetry and bottom type, e.g. sand, mud, rock and clutter, 
necessary to support current Mine Warfare (MIW) decision aids.  The use of hyperspectral sensors 
deployed on organic UAV platforms, coupled with airborne (e.g. LIDAR) or in-water estimates of 
bathymetry would allow for these information streams to be generated in near-real time in the littoral 
areas. 
 
TRANSITIONS 
 
The code and databases developed in this work were immediately passed on to P. Bissett and 
colleagues at the Florida Environmental Research Institute, who were responsible for the LIDAR 



aspects of this work and who collaborate on the further development of the LUT methodology for 
processing HSI. 
 
RELATED PROJECTS 
 
This work dovetailed with the further development of the LUT methodology, which is separately 
funded.  My work was conducted in conjunction with Drs. Paul Bissett and Dave Kohler of the Florida 
Environmental Research Institute, who were separately funded for this collaboration.  FERI was 
developing techniques for the fusion of LIDAR and hyperspectral imagery, focusing on the time-gated 
LIDAR signals combined with the application of the inversion techniques (LUT, optimization, and 
genetic algorithms) using known bathymetry. 
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Fig. 1.  An RGB image of the Horseshoe Reef area made from a PHILLS 
hyperspectral image taken May 20, 2000.  The bottom includes areas of highly 

reflecting ooid sands, low reflecting, dense sea grass beds, and intermediate reflecting 
areas of mixed sediments, corals, sea grass, turf algae, and macrophytes. 

 
 
 

 
 

Fig. 2.  Acoustic bathymetry coverage for the area corresponding to Fig. 1.  The black 
dots show the locations of the acoustic pings.  The depth at each pixel of the image of 
Fig. 1 is obtained by interpolation between the locations of the acoustic data, where 

available.  Regions for which no acoustic data are available are omitted from further 
analysis.  The color-coded depths are for the unconstrained LUT retrieval applied to 

the entire image. 



 
 

Fig. 3.  Bottom reflectance Rb at 488 nm obtained by LUT in an unconstrained retrieval.  The gray 
area does not have acoustic coverage. 

 
 
 

 
 

Fig. 4.  Bottom reflectance Rb at 488 nm obtained by LUT in a depth-constrained 
retrieval, i.e., when the bottom depth at each pixel is given by the acoustic bathymetry. 

 
 



 
 

Fig. 5.  Percent change in bottom reflectance Rb at 488 nm for the depth-constrained 
vs. unconstrained retrievals of Figs. 3 and 4.  Negative changes mean the bottom got 

darker (less reflective); positive changes mean the bottom got brighter (more 
reflective). 

 
 
 

 
 

Fig. 6.  Bottom classification for the unconstrained retrieval. 



 
 

Fig. 7.  Bottom classification for the depth-constrained retrieval. 


